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ABSTRACT 

We study the rotational distortions of the vacuum dipole magnetic field in the 
context of geometrical models of the radio emission from pulsars. We find that 
at low altitudes the rotation deflects the local direction of the magnetic field by 
at most an angle of the order of ri ,  where r, = r/&, r is the radial distance and 
Ri, is the light cylinder radius. To the lowest (ie. second) order in r,, this distor- 
tion is symmetrical with respect to the plane containing the dipole axis and the 
rotation axis ((6,c) plane). The lowest order distortion which is asymmetrical 
with respect to the (6,,G) plane is third order in T,. These results confirm the 
common assumption that the rotational sweepback has negligible effect on the 
position angle (PA) curve. We show, however, that the influence of the sweep 
back on the outer boundary of the open field line region (open volume) is a much 
larger effect, of the order of T:’~. The open volume is shifted backwards with 
respect to the rotation direction by an angle JOv N 0.2sinart’2 where a is the 
dipole inclination with respect to the rotation axis. The associated phase shift 
of the pulse profile 44,,,, - 0.2rii2 can easily exceed the shift due to combined 
effects of aberration and propagation time delays (E 2~,). This strongly affects 
the misalignment of the center of the P.4 curve and the center of the pulse profile, 
thereby modifyi~g the de!ay=rdius re!atim. Cc~ttrary t~ ictuit i~n, the effiet of 
sweepback dominates over other effects when emission occurs at low altitudes. 
For r, 5 3 the shift becomes negative, ie. the center of the position angle 
curve precedes the profile center. With the sweepback effect included, the mod- 
ified delay-radius relation predicts larger emission radii and is in much better 
agreement with the other methods of determining T,. 

Subject headings: pulsars: general - polarization - radiation mechanisms: non- 
thermal 
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1. Introduction 

There are independent observational arguments which imply that the pulsar radio emis- 
sion occurs in a form of a narrow beam centered (or roughly centered) on the magnetic 
dipole axis (eg. Radhakrishnan & Cooke 1969; Lyne & Manchester 1988; Rankin 1990; 
Rankin 1993). I t  is commonly believed that the emission region associated with the beam 
does not extend beyond the region of open field lines (hereafter called “open volume”) which 
cross the light cylinder of radius R1, = c /Q  (c is the speed of light and fi = 0 2  is the angular 
velocity of pulsar rotation). The angular size of the open volume at (small) radial distance 
T is equal to  13:~ E ( T / R ~ , ) ~ / ~  and the cone formed by tangents to magnetic field lines at the 
rim of the open volume has angular radius of &, 21 1.58,TV. The radial distance of the emission 
region has not been established so far: both a high-altitude emission region extending over 
a small fraction of 0Lv, as well as a low-altitude emission region which fills in a much larger 
fraction of f9Lv may be responsible for the same shape of the radio beam. 

The sweepback effect was first investigated in detail by Shitov (1983) who considered it 
to explain the observed dependence of radio luminosity of pulsars as a function of period. He 
estimated the magnitude of the rotational distortions of the magnetic field from the torque 
responsible for the observed slowing down of pulsars. He found that at moderate altitudes 
within the open volume, “near” the dipole axis, the direction of the distorted magnetic field 
deflects from the direction of the pure (ie. static shape) dipole barely by an angle 

where a is the dipole inclination with respect to the rotation axis. Since that time the 
sweepback effect has been recalled to explain asymmetries observed in some pulse profiles 
(eg. Gil 1983). 

In 1985 Shitov incorporated the sweepback effect into the model of pulsar position angle 
curves proposed by Radhakrishnan & Cooke (1969) and showed that the sweepback results 
in a lag of the profile center (measured as the midpoint between the outer edges of the 
pulse profile) with respect to  the center, or the “inflection point” of the position angle curve. 
Shitov emphasized that the lag of the profile center was a sum of two effects: not only the 
center of the PA curve is shifted toward earlier phases (with respect to the nondistorted 
case) according to  the eq. (l), but also the center of the open volume is displaced backwards, 
which contributes to the total effect. 

In most of subsequent investigations, however, the sweepback has been neglected, mainly 
on the basis of eq. (1). Blaskiewicz et al. (1991, hereafter BCW91) proposed a relativistic 
model of pulsar polarization which took into account two important effects overlooked by 



Shitov: the presence of the corotational acceleration and the aberration effect. An excellent 
result of their work was the “delay-radius” relation, according to  which the center of the PA 
curve Zags the profile center by 

where T is the radial distance of the radio emission. With no dependence on viewing geometry 
parameters (like the dipole inclination a, or the viewing angle Cobs between the rotation 
axis and the observer’s line of sight), their relation appears to provide a powerful method of 
determining T. Equally important, the delay-radius relation depends neither on the observed 
width of the pulse profile W nor on the separation between the conal components in the 
pulse profile. Therefore, the altitudes of radio emission provided by eq. (2) may serve to 
determine which magnetic field lines are associated with the outer edge of the profiles and 
which field lines correspond to the maxima of conal components (Mitra & Rankin 2002; Dyks 
et al. 2004a). Von Hoensbroech & Xilouris (1997) used the delay-radius relation to probe 
the radius-to-frequency mapping at high radio frequencies. 

Gangadhara & Gupta (2001) proposed another relativistic method of estimating radio 
emission altitudes for pulsars with both core and conal components. By considering the 
effects of the aberration and the propagation time delays they showed that the core com- 
ponent lags in phase the midpoint between the maxima of conal components, if the core 
originates from lower altitudes than the cones, and if the cones are axially symmetric around 
the core in the reference frame corotating with the star (CF). Dyks et al. (2004a) revised 
their method and showed that the phase shift between the core component and the pairs of 
conal components is equal to  

which provides another method for determining T without information about viewing geome- 
try (nor W ) .  As in the case of the delay-radius relation; the above formula holds only for the 
magnetic field which is symmetrical about the (6, ,Z) plane (where ,ii is the magnetic moment 
of t he  p d s x  magnetic fieid), at least as iong a s  one associates the assumed symmetry of the 
core-cone system with the geometry of the underlying magnetic field. 

Given that the methods provided by eqs. (2) and (3) are based on a measurement of tiny 
phase shifts (of magnitude usual€y being a small fraction of one degree) they are extremely 
sensitive to the assumed geometry of the magnetic field. The latter was taken to be a 
dipole of static shape, with no rotational distortions. It is therefore important to study the 
influence of the sweepback on these methods. Another argument for the study is provided 
by the unacceptably low values of T which are often being derived with the BCW91 method: 
as found in BCW91, the “delay radii” rde1 implied by their method (eq. 2) are often smaller 
(in some cases by an order of magnitude - see fig. 29 in BCW91) than the geometrical radii 
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rgeo determined with the traditional geometrical method based on the measurement of profile 
widths (Cordes 1978; Gil & Kijak 1993; Kijak & Gil2003). This poses a real problem for the 
BCW91 method, because the geometrical radii, in the absence of strong refraction effects 
(Lyubarski & Petrova 1998), should be considered as lower limits of T (Dyks e t  al. 2004a). 
The reason for this is that we most probably miss the emission from the outer parts of 
the open volume, either because this region is inactive, or because of the limited sensitivity 
threshold (or because of both). Although strong irregularities of the radio beam could result 
in ?-del < rgeo in some cases, on average the opposite trend should be observed, but it is not 
(eg. Mitra & Li 2004). Given that BCW91 “cut away” the outer wings of pulse profiles by 
assuming the lowest intensity points at the high 10% level, the “center of mass” of points 
in their Fig. 29 should be located clearly above the diagonal of perfect agreement. In this 
paper we argue that the rotational distortions of the static shape dipole are responsible for 
a large part of this problem. Among the other effects which work in the same direction, one 
we consider is the variation of emission altitude across the pulse profile, mentioned already 
by BCW91 and described in detail in Dyks et al. (2004a). 

Recently Kapoor & Shukre (2002) considered the aberration effect and the rotational 
sweepback to investigate the relative locations of core and cone components in the pulsar 
magnetosphere. Although included in the model, the sweepback is again estimated with the 
help of eq. (1). Being aware of the limitations of Shitov’s estimate, the authors emphasized 
the need for derivation of a more advanced formula describing the rotational distortions of 
the magnetosphere. They noted that a proper derivation “should make use of at least the 
magnetic field given by the full Deutsch solution (Deutsch 1955)”. 

Such an estimate based on the Deutsch solution was done by Arendt & Eilek (1998), 
who concluded that the rotation distorts the magnetic field by a magnitude of the order of 
r / R l C .  Being much larger than the Shitov’s estimate, this distortion would strongly affect 
results in BCW91, GG2001, Hibschman & Arons (2001, hereafter HA2001), and Dyks et 
al. (2004a). On the contrary, HA2001 noted that the leading terms in the difference between 
the Deutsch field and the rigidly rotating static-shape dipole are of the order of ( T / & ) ~ .  

Recently, Mitra & Li (2004) emphasized that on the theoretical side there is a great need to 
develop and understand the details of the sweepback effect. 

In this paper we investigate the rotational distortions of the pulsar magnetic field assum- 
ing the approximation of the vacuum magnetosphere. The twofold nature of the sweepback, 
first noticed by Shitov (1983) will be highlighted, and limitations in applicability of eq. (1) 
will be clarified (Section 2). The significance of the sweepback for the relativistic model of 
pulsar polarization will appear to be much larger than previously thought, which will have 
serious consequencies for the delay-radius relation (eg. modification of eq. 2, Section 3). 

~ 
~~ ~ 
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2. The rotational distortions of the dipolar magnetic field 

l f ~ e  f~lj0157 prex,rions i ~ ~ ~ ~ s t i g ~ ~ ~ r s  (Dects& 1955; Shitok- 19883; 3arna-d 1986; &jin;zni & 
Yadigaroglu 1995, hereafter RYSS; Cheng et al. 2000, hereafter CRZ2000) in assuming that 
the magnetic field surrounding the neutron star (NS) may be approximated by the vacuum 
rotating dipole. -4s in Barnard (1986), RY95, and CRZ2000, we assume that outside the 
NS the field is the same as of the star-centered point dipole, ie. we neglect the near-surface 
modifications of the magnetic field by the conducting sphere of the neutron star, derived 
by Deutsch (1955) (see Yadigaroglu 1997). Hereafter, the magnetic field will be called a 
“retarded dipole” and will be denoted by ZRt. In Appendix A we give the Cartesian and the 
spherical components of Zret (eqs. A1 - A3 and A15 - A17, respectively). 

We want to estimate how much the rotational sweepback distorts the magnetic field at 
low altitudes (T << &). One measure of this is the difference between the retarded magnetic 
field gre, and the magnetic field of the static-shape dipole &. The components of zst can 
be calculated with the help of eqs. (A1 - A3) taken in the limit of r, << 1 (ie. with the ratio 
T, set equal to zero). We define the difference as: 

In all formulae we assume that both the retarded dipole and the static-shape dipole are 
associated with the same magnetic moment j i ,  which at the time t = 0 is in the (3,Z) plane 
(time t is measured in the Lorentz frame in which the neutron star’s center of mass is at 
rest). Thus, at any instant iist = &et = j i ,  where 

,Z=p(sinacosQt 2F:sinasinRt Gt-cosa  E ) .  ( 5 )  

At any point which corotates with the magnetosphere the components of .&et in the inertial 
observer frame (IOF) do not depend on t (see eq. A4). Therefore, one is allowed to choose 
any convenient value of t in t h e  IOF. ‘Ne take t = 0 (ji in the (j.,.i-) pianej and constrain our 
discussion to the half of the magnetosphere with positive values of IC. The positive values of 
the y coordinate then correspond to the leading part of the magnetosphere and the negative 
y correspond to the trailing part. In Cartesian coordinates and for t = 0 the difference is: 

1 (z2 + r 2 )  r i  + O(~cf) 

zy T-: - - T T, + O ( T ~ )  

3;z r: + O ( T ~ )  . 

2 3  

3 

1 
(7 )  
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In agreement with the remark of Hibschman & Arons (2001), the leading terms are second 
order in r,. The second order terms of AB, and of AB, do not depend on y. The second 
order term of AB, is odd function of y (AB,(y) = -AB,(-y) + + O(r:)). These features 
are important because the symmetry of any vector field B = (Bz,  By, B,) with respect to 
the (6, ,Z) plane requires the following relations to be satisfied: B,(z, y, z )  = B2(z, -9, z ) ,  
B,(z, y, z )  = -B,(z, -y, z ) ,  and Bz(x, y, z )  = B,(z, -y, z )  (ie. the B, and B, components 
must be even, and the By component must be odd in y). 

4 

The angle K between Zret and Bst, to the order r:, is given by: I 
where the functions f l ,  f 2 ,  and f3, given in Appendix A, depend on IC, y,  z ,  and on the 
inclination angle a (but not on r,) and in general have magnitude of the order of 1, except 
from special locations in the magnetosphere which we discuss below. 

Thus, the rotation causes the magnetic field to deviate from ZSt by an angle which 
at most is second order in r,. Along the magnetic dipole axis2 of an orthogonal rotator, 
however, (ie. for Q = 90” and (z, y, z )  = (T,  O , O ) ) ,  one obtains f1 = 0, f 2  = 0 and f 3  = 9-1 
so that K is third order in r,: 

(10) 1 3  IC=-- - ,  
3 

in partial agreement with the estimate of Shitov (1983). Beyond the orthogonal dipole axis, 
however, as well as at the dipole axis of non-orthogonal rotator, f1 # 0 and K may be much 
larger. On the (i?,,Z) plane f 2  = 0 (because f 2  0: y, see eq. AS). Beyond the (i?, ,Z) plane 
( f 1  # 0, f 2  # 0 ) ,  the  first two terms in eq. (9) dominate and give: 

Let us estimate the’angles 1c1 and Kt for two points fi(z1,y1,zl) and Pt(zt, yt,  zt) located 
symmetrically on both sides of the (fi,,Z) plane. Let us consider the particular case in which 
the points lie in the plane of rotational equator, close to  the rim of the open volume of 
orthogonal rotator, ie. z1 = xt = r ( l  - r,)ll2, y1 = -yt = rrt’2, and z1 = zt = 0, with the 
positive value of the y coordinate corresponding to the point Pl on the leading side of the 
open volume, and the negative y for the trailing point Pt (see Fig. 1). Then eq. (A5) gives 
fi = 4-’rn, f2  = k3-1rA’2, which results in ~1 z 2-1r:’2 + 3-lr; and Ict 2-’r:l2 - 3X’r:. 
Both angles are considerably larger than the distortion of the magnetic axis given by eq. (10). 

2By the “magnetic dipole axis” we understand the straight line containing the magnetic moment r.’. In 
the case of the retarded dipole, the axis cannot be associated with any magnetic field line. 
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Eqs. (6 - 8) imply, however, that  up to the second order in r,, the rotational distortion 
of zSt is symmetrical with respect to  the (6,L;) plane (because 4Bz is even: and the leading 

beyond the dipole axis of t h e  orthogonal rotator the angle K, between zret and provides no 
information about the magnitude of the asymmetry of Z r e t  with respect to the (6, L;) plane. 

To estimate the asymmetry for points located beyond the (6, L;) plane, one must there- 

t,c:LllI ul ,I uuy A D  is * uuu -dd iii . 9). This (appioxiiiiatej symmeiry, shown in Fig. I, impiies that 

fore use the difference between azimuths of @ret at the points PI and Pt: 

where 41 is the azimuth of &t at the point fi(q,y1,zl), 4t is the azimuth of Zpt at 
Pt(zl, -y1, z1) (see Fig. l), and 

Equation (12) clearly demonstrates that Ah.-t is third order in T,, ie. the rotation induces 
the asymmetry of &et with respect to the (fi,$ plane with magnitude of the order of T:. 

Equation (12) is not useful in the immediate vicinity of the (fi, 6) plane (nor at the plane 
itself), because 41 changes sign to negative (ie. &et is parallel to the (fi, L;) plane) for locations 
with the tiny azimuth 

(ie. within a narrow region on the leading side of the (fi, L;) plane Bret ,y  < 0 and eq. (12) 
gives a sum rather than a difference of azimuths). To estimate the asymmetry on the (6, L;) 
plane one can use the difference of azimuths of sst and Zret at a given (the same) point: 

where the function f4(z, y ,  z, a)  is given in Appendix A (ea. A14). Beyond the (6, ii) plane 
the first term in this equation dominates (ie. A4S-r -N f4~:) but it is symmetrical with 
respect to  the (6,ji) plane (ie. odd in y, f 4  cx y). Therefore, just like 6 given by eq. (9), 
A$s-r provides no estimate of the rotational asymmetry there. On the (6, L;) plane f 4  = 0 
and 4 4 s - r  does measure the asymmetry which is of the order of T:. Along the dipole axis 
BSt,% = 2psincr/r3 so that N- 3-'r:, independent of CY. 

Eqs. (9), (12), and (15) can be summarized as follows: the rotation changes the compo- 
nents and the direction of the dipolar magnetic field by - r;. To the order of T; this change, 
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however, is symmetrical with respect to the ( f i ,G)  plane. The asymmetrical  change of the 
magnetic field direction has much smaller magnitude of the order of r: and is given by the 
second term of eq. (15). 

An immediate consequence of eq. (9) is that with accuracy of the order of rn, the rotation 
does not affect the shape of the position angle curve which depends on the local direction of 
&et. This allows one to neglect the influence of the sweepback o n  the  posi t ion angle curve 
as long as only the first order effects in rn are considered. Given the tiny magnitude of the 
rotational asymmetry as defined by eq. ( la) ,  investigators often neglect its influence on the 
shape of the pulse profile as well (eg. BCW91, GG2001, HA2001). As we show below, this 
is not justified. 

2.1. The rotational distortions of the open field line region 

In the method of BCW91, the center of the pulse profile is most efficiently measured 
as a midpoint between the outer  edges of the profile. Therefore, the method is based on 
the assumption that the outer  boundary of the open volume is symmetrical with respect to 
the (fi,c) plane. Due to the complexity of the magnetic field lines in the retarded case, we 
determine the outer boundary of the open volume numerically, by finding the magnetic field 
lines which are tangent to the light cylinder and never cross it. The method is described in 
detail in Dyks et al. (2004b). 

I 

Thick solid lines in Fig. 2 present the transverse shape of the open volume at low 
altitudes (rn << l), calculated for the retarded magnetic field More precisely, they 
represent the crossection of the outer boundary of the open volume with a sphere of radius 
r = 0.01R1, centered at  the neutron star. Different panels correspond to different dipole 
inclinations a. The magnetic moment ,!i in all panels emerges perpendicularly from the 

112 page at  the point (xm,ym) = (0,O). The thin circles have radius equal to = r r n  , 
and are centered at the (0,O) point to guide the eye in assessing the asymmetry of the 
open volume around ,ii. Given the small difference between the local direction of Z r e t  and 
zst (eq. 9), one may regard each panel to be permeated by the magnetic field of the stat ic  
dipole with the straight magnetic field line emerging from the (0,O) point toward the reader. 
The field is symmetric relative to the (fi,,Z) plane, ie. with respect to the vertical line of 
5 ,  = 0 (to be imagined in each panel of Fig. 2). In the course of corotation, the contours 
of the open volume outer boundary move to the left in Fig. 2, ie. zm < 0 correspond to 
the leading, and 5,  > 0 to the trailing side. An observer’s line of sight cuts the contours 
horizontally, moving left to right. The dotted lines present the shape of the open volume 
for the static dipole (eg. Roberts 8~ Sturrock 1972; Biggs 1990; Beskin, Gurevich & Istomin 

~~ 
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1993; Shukre k K 
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poor 1998). We emphasize that the definitio of the open field line region 
based on the light cylinder radius is inherently inconsistent with the static dipole geometry. 
The ovalness generated by the inclination of the dip& is therefsre B przm&,ture ref inezent, 
which practically disappears as soon as the rotation is taken into account. 

We emphasize that our Fig. 2, calculated for t = 0 in eqs. (A1 - A3), differs significantly 
from analogous figures shown in Arendt & Eilek (1998) and in CRZ2000. The location of the 
retarded polar caps in their figures corresponds to the magnetic moment ,Z rotated by the 
angle fiR,/c with respect to the (2,Z) plane (ie. they assume t = &/c in eqs. A1 -A3). At 
the same time, however, they assume t = 0 (,Z in (2 , i )  plane) to position the polar caps for 
the static case. Therefore, their figures do not inform us what is the relative position of the 
static and retarded caps in phase - only the caps’ shapes can be compared. (To enable this, 
their retarded caps would have to be derotated by sZ&/c with respect to the static caps.) 
Also, note that the components of the magnetic field for the static-shape dipole given in 
CRZ2000 (eqs. A1-,43 therein) are for t = 0 whereas the components for the retarded dipole 
(eqs. B2-B4 in CRZ2000) are for t = Rm/Rlc. Their difference does not give eqs. (6 - 8): 
by overlooking this misalignment of the dipoles ilrendt & Eilek (1998) incorrectly estimated 
that the rotational distortions of the magnetic field are of the order of r,. -4nother issue 
related to Fig. 2 is that for moderate dipole inclinations (a - 40” - 50”) the contours possess 
a notch rather than a discontinuous “glitch” suggested in Arendt & Eilek (1998) (see Sec. 2.1 
in Dyks et al. 2004b for details). 

The following important conclusions can be drawn from Fig. 2: 1) the open volume is 
strongly asymmetric with respect to the (6,z) plane; 2) the magnitude of the asymmetry 
depends on ym and thus on the impact angle ,B; 3) regardless of the value of ,B the pulse 
window associated with the outer boundary of the open volume is always shifted backwards, 
ie. toward later phases; 4) the magnitude of this rotational asymmetry is very large, much 
larger than the local changes of the direction of the magnetic field caused by the rotation 
(eq. 9), and even larger than rn (for large a the “retarded contours” are (on average) - shifted 
toward later phases by - 0.20&, = 0.2~:’~ = 0.02 to be compared with rn = 0.01). 

This numerical result implies that none of the previous estimates (neither eqs. 12, 15, 
nor the Shitov’s formula 1) provide a reliable measure of the rotational distortion of the 
open volume shape. The reason for this is that the boundary of the open volume is not only 
determined by the local (ie. low-altitude) direction of but also (and most importantly) 
by the geometry of &et near the light cylinder, where rn - 1. At Illc all ”higher order” effects 
become comparable in magnitude to the lowest order effects, in the sense that r,“ N 1 for any 
m. With the strength of the rotational distortions being very large at  I l l c ,  a very different 
set of magnetic field lines is picked up as the last open field lines which form the boundary 
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of the open volume. This “retarded” boundary is highly asymmetrical with respect to the 
(6, ,Z) plane (Fig. 2). The magnitude of this asymmetry has little to  do with the low-altitude 
rotational distortions as estimated with eqs. ( l a ) ,  (15) and with Shitov’s formula, because 
the low-altitude crossection of the open volume boundary is an image of the strong near-Rlc 
distortions projected through the continuity of the magnetic field lines. Hereafter, we will 
refer to the asymmetrical distortion of the open volume with the terms “backward shift” or 
“displacement” of open volume. 

Another numerical result is that the contours shown in Fig. 2 are (with high accuracy) 
the same for any radial distance rn,  as long as r, << 1, and as long as their size is normalized 
by rO;, = rr;”, as in Fig. 2. Contours calculated eg. for r, = or r, = 0.1 look exactly 
the same as those shown in Fig. 2. This means that for r, << 1 the overall (ie. averaged over 
the impact angle p) angular displacement of the open volume So, is a fixed fraction of the 
angular radius of the open volume 0:”: 

(16) So, “Y aO;, = ar, 112 

with a “Y 0.2sincy. The dependence a c( sin& has been determined by noting that So, 
(measured from the star center) decreases with cy (Fig. 2), whereas the corresponding phase 
shift Aqi,, M S,,/sina of the pulse profile does not (see Fig. 3, the discussion in Section 3.1, 
as well as eq. A8 in Dyks et al. 2004a). 

Equation (16) implies that the rotational displacement of the open volume has magni- 
tude comparable to the combined effects of aberration and propagation time delays (hereafter 
APT effects, of magnitude 2~,, see Dyks et al. 2004a) for r, N a2/4 - 0.01, which is quite 
typical estimate of radio emission altitudes (eg. Gupta 8z Gangadhara 2003; Kijak 8z Gil 
2003). For r,  << 0.01 the backward shift of the open volume dominates over the APT 
effects. For T, >> 0.01 the APT effects dominate over the open volume shift. 

2.2. Twofold nature of the rotational distortions 

We find, therefore, that the nature of the rotational distortions at low altitude is twofold: 
in addition to  the famous (but negligible) asymmetrical distortion of the local magnetic field 
direction (of magnitude - r:, eqs. 12  and 15) the rotation shifts the open volume backward 
by a much larger amount of N rf;”. The low-altitude shift of the open volume is not caused 
by the distortions of the shape of magnetic field lines at low altitudes - locally their shapes 
are pretty much the same as those of the static dipole. It is due to the strong near-Rlc 
distortions. 

Although Shitov (1985) in his analysis of the phase shift between the pulse profile 

~ ~~~ 
~~ 
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center and the center of the position angle curve neglected the APT effects, he did include 
the backward displacement of the open volume and did emphasize the twofold nature of the 
iotatioiia! dist~rtioiis (see his fig. 2). I~OXFVG, he Bas uoi pruvided any simpie estimate of the 
open volume displacement (like eq. 16). Therefore, in most studies following his work only 
the tiny local deflection of 2 has been considered (eqs. 12, 15 and Shitov’s estimate), usually 
only to infer that the rotational distortions are negligible in generation of any asymmetry in 
a pulse profile. 

3. Implications €or the relativistic model of pulsar polarization 

Implications of the rotational displacement of the open volume for the relativistic model 
of pulsar polarization are profound, because this effect is lower order (- r t / 2 ,  eq. 16) than 
the effects considered so far (aberration - T,, propagation time delays - rn). Although the 
P-4 curve is practically unaffected, the center of the pulse profile to which the P-4 refers is 
considerably displaced. 
Let us define a phase zero as a moment at which an observer detects a light signal emitted 
from the neutron star center when ,ii was in the (fi,p) plane. As discussed in Dyks et 
al. 2004a, the total phase shift A@ between the center of the position angle curve and the 
pulse profile center can then be separated into two components: the shift of the center of the 
PA curve by A 4 p ~  FZ 2rn towards later phases with respect to the zero phase, and the shift 
of the pulse profile center toward earlier phases by A&f with respect to the zero phase. Had 
the boundary of the open volume been symmetrical with respect to the (fi,,Z) plane (as in 
the case of the static-shape dipole) the prof2e center would be shifted forward in phase by 
44,f M -2, which would result in the total shift of 4rn as initially predicted by BCW91. 
Due to the backward displacement of the open volume given by eq. (16), however, the forward 
profile shift is decreased by A$ov FT;’~ (with F - u/ sin cy) so that Aq$,f = -(2rn - Frn 1/2) . 

Therefore, the deiay-radius reiation or* BCiVSi (eq. 2 j becomes: 

I 

A@ A$pA + (-A$,,) 2rn + ( 2 ~ n  - 

with F in general being a complicated function of cy, and rn. We emphasize that this formula 
holds only when the detectable radio emission fills in the open volume. If the beam’s outer 
edge is irregular, the formula may give erroneous results for a particular object, however, it 
is still useful for statistical studies. The complicated form of F results from the complicated 
shape of the open volume boundary (Fig. 2) which implies nontrivial dependence of F on 
the impact angle and thereby on C. Since the sign of the impact angle ,B = - cy provides no 
information about whether the viewing trajectory is poleward or equatorward (in the sense 



defined in Everett & Weisberg 2001) hereafter we will use the angle 

px = { P ,  if Q 5 9 0 "  
-p, if Q > 90" 

which is negative/positive for poIeward/equatorward viewing geometry regardless of whether 
Q > 90" or not. Changes of F as a function of r E ,Ox/&, x ,BX/(1.5rk/') are illustrated in 
Fig. 3 for the same angles a, as those in Fig. 2. The functions F ( T )  were calculated for 
T,  = 0.01, however, they change little with rn, as long as T, << 1. Fig. 3 shows that F is 
confined to the rather limited range of 0.1 - 0.4 for any combinations of Q and c. Also, F is 
always positive which implies that the displacement of the open volume results in a smaller 
phase shift A@ than predicted by the original delay-radius relation (eq. 2). The radio 
emission radii provided by the original delay-radius relation are therefore underestimated by 
a factor which may be very large for some parameters. 

3.1. The misalignment formula 

The delay-radius relation which includes the rotational distortions of the open volume 
(in the vacuum approximation) becomes: 

and it is plotted in Fig. 4 for a few values of F equal to 0.1, 0.2, 0.3, and 0.4 (solid, dotted, 
dashed, and dot-dashed curve, respectively). (For convenience, A@ on the vertical axis is 
in degrees, whereas eq. 19 gives A@ in radians.) The thick dashed line presents the original 
delay-radius relation of eq. 2. For r, < F2/16 (eg. for T, < for F = 0.4, dot-dashed 
line), ie. for small emission radii, the phase shift A@ becomes negative (ie. the center of the 
PA curve precedes in phase the profile center), which is a new feature in comparison with the 
original delay-radius relation which always predicted the delay of the PA curve with respect 
to the profile. Since eq. (19) predicts that the center of the PA curve may either precede 
or lag the center of the profile, it will be referred to as the '(misalignment'' formula. For 
large radii r, 2 the formula always predicts positive A@ and, for increasing r,, slowly 
converges to the original delay-radius relation. 

For any A@, the radio emission radii estimated with the original delay-radius relation 
underestimate those implied by eq. (19) (see Fig. 4). For A@ N lo, the delay-radius relation 
underestimates T given by eq. (19) by a factor of 1.5 - 4 (depending on F ) .  For A@ x 0.3", 
0.1", and 0.01" the underestimate factor is in the range of 2 - 9, 3 - 22, and 16 - 220, 
respectively. For A@ = 0 the underestimation factor is formally infinite. In the absence 
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of effects described in Section 4, the negative values of the shift 4@ cannot be lower than 
-F2/16 2 -0.57". 

Unlike the original delay-radius relation, the misalignment formula predicts that the 
implied emission radii depend on the viewing geometry (especially on ,Bx) and that this 
dependence cannot be separated from the dependence on rn: even for fixed cy and px, when 
the line of sight probes the magnetosphere deeper and deeper (ie. when r, decreases in 
Fig. 4), the absolute value of the parameter r E 8x/(1.5~k") increases - the line of sight 
cuts through the open volume more peripherally. This departure from r = 0 in Fig. 3 implies 
that the value of F changes (sometimes abruptly) with varying rn, ie. for fixed a and ,LlX the 
value of F is not fixed - it depends on r,. 

The complicated behaviour of the misalignment formula (19), is exemplified in Fig. 5 ,  
which presents 4@ as a function of r, calculated numerically for a = 45" and three values 
of cobs = 43, 45, and 47" (circles, squares, and crosses, respectively). For large r, (and 
so for large A@) the line of sight crosses the open volume nearly centrally (px << 1.50&,, 
r 2: 0), so that F = 0.1, regardless of the value of co0bs and cy (see Fig. 3). Therefore, all the 
three numerical solutions stay close to the analytical solution for F = 0.1 (thin solid line). 
For smaller rn, (and 4@ 5 lo), the numerical results diverge from each other: the case of 
cobs = cy = 45" (squares) remains close to the analytical solution with F c= 0.1 (it follows 
eq. (19) with F x 1-07), because the parameter r cc px is fixed and equal to  zero. 
In the case of cob = 47" (equatorward viewing, crosses in Fig. 5), the parameter T increases 
with decreasing rn because the line of sight traverses more peripherally through the open 
volume. -4s can be inferred from Fig. 3 (panel for QI = 45") this makes F increase through 0.2 
up to N 0.26 for r N 1, and accordingly, the numerical solution in Fig. 5 crosses the dotted 
line for F = 0.2 and approaches the vicinity of the dashed line for F = 0.3. At logr, -N -3.33 
the line of sight just grazes the outer boundary of the open volume (T -N 1.08). .4t smaller 
radial distances the line of sight does not penetrate the open volume. 
In the pnleward case of cebs = 4 3 O  (circles in Fig. 5), T ~ P C O I ~ ~ P S  mere - n-ative "0 with decreain- b 
r n .  Since the backward displacement of the open volume is stronger on its poleward side 
(see Figs. 2 and 3) the solution crosses the analytical curve for F = 0.2 (dotted line in 
Fig. 5) earlier than in the equatorward case (ie. a t  smaller 171). At logr, N -2.43, the line 
of sight starts to cut the radiation beam above the notch visible in Fig. 2. This results in 
a discontinuous increase of F from - 0.25 up to N 0.39 (Fig. 3). Therefore, the numerical 
solution jumps to the vicinity of the dot-dashed line of F = 0.4 (Fig. 5 ) .  For more peripheral 
traverses (ie. for smaller T, and more negative T ) ,  F changes little between 0.39 and 0.35, 
and the numerical solution departs only slightly from the F = 0.4 curve. For log T, 5 -3.25 
the line of sight misses the open volume. This minimum value of logr, differs slightly 
from the one for p, = +2" (crosses) because in addition to the backward displacement, 
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the open volume is also slightly shifted (with respect to ,Z) towards the rotational equator 
(ie. downwards in Fig. 2). 

3.1.1. Determination of emission radius 

The above-described complicated form of the function A @ ( T ~ ,  a, Cobs) does not allow an 
easy determination of T,. Numerical determination of r, based on the known values of A@, 
a,  and cobs is rather sophisticated. Therefore, in Appendix B we discuss the particular cases 
when easy derivation of T, is possible and then we propose a procedure, which allows the 
possible range of T, to be constrained in a general case of arbitrary viewing geometry. Fig. 4 
and the examples considered in Appendix B make it clear that for a given phase shift A@, 
the misalignment formula predicts larger emission radius than the delay-radius relation of 
BCW91, and is therefore less prone to the problem of emission from the closed magnetic 
field lines. Another effect, which works in the same direction, ie. increases T, and may 
additionally lessen the problem is the altitude-dependent position angle swing. 

4. Altitude-dependent position angle swing 

When different parts of the pulse profile originate from different altitudes, the PL4 curve 
can no Ionger be described by the standard equation of Radhakrishnan & Cooke (1969). 
The simple analytical equation for the altitude-dependent PA swing is given in eq. (16) of 
BCW91. The formula predicts that if the radial distance T of the radio emission is uniform 
across the pulse profile, the entire PA curve is shifted rightwards (toward later phases) by 2r 
with respect to the zero phase. This effect is illustrated in Fig. 6: The thin solid line with 
dots is the PA curve for the fixed emission altitude of T, = calculated numerically for 
the retarded dipole field with a = 45" and = 43". In agreement with BCW91, its center 
lags the phase zero by 2r, rad = 1.14", and there is no discernible sign of the sweepback 
effect (see Section 2). 

If the central parts of the pulse profile originate from much lower radial distance T than 
the edge, and if T <( O.OIRl,, the central parts of the PA curve do not exhibit any appreciable 
shift and nearly follow the undisturbed S-curve of Radhakrishnan & Cooke. The solid line 
which nearly passes through the (0,O) point in Fig. 6b has been calculated for the emission 
from the last open magnetic field lines of the retarded dipole for the same a and C as above. 
The corresponding radial distance of the radio emission as a function of phase q5 is shown in 
panel a of Fig. 6. Within the central parts of the PA curve, the emission altitude is negligibly 
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small and the PA curve nearly follows the undisturbed S-swing (dotted ine in Fig. 6b). 

Thus, in the case when the central parts of the profile are emitted from much lower 
altitudes than the outer edge of the profile, the PA swing practically does not undergo the 
delay by 2r,. The misalignment formula (19) then becomes 

l and is illustrated in Fig. 7 with the same layout as Fig. 4. One can see that in the considered 
case, the shift is much smaller than the shift predicted by the standard delay-radius formula 
(eq. 2, thick dashed line in Fig. 7). For a typical phase shift A@ N 0.3" eq. (2) underestimates 
r by an order of magnitude. The range of altitudes for which the shift is negative is much 
larger than in the case with the constant emission altitude (eq. 19, Fig. 4). 

5. Conclusions and Discussion 

The rotational distortions of the vaccum dipole have twofold effect: in addition to the 
small changes of the local direction of the magnetic field, the region of the open magnetic 
field lines undergoes a strong distortion. 

The change of the local direction of is second order in rn. We find, however, that 
it is symmetrical with respect to the (6,jl) plane. The largest asymmetrical change of 2 
direction is much smaller - third order in rn, in agreement with Shitov's estimate. 

The region of the open field lines of rotating dipole possesses inherent asymmetry with 
respect to the (fi,,G) plane, a t  least in the limit of negligible plasma density. Therefore, the 
pulse window is shifted toward later phases with respect to the center of the position angle 
curve. The shift has the magnitude of the order of 0.2rA'2. The open volume shift modifies the 
delay-radius relation if the center of the pulse profile is determined as the midpoint between 
the outer edges of the pulse profile, which are assumed to lie close to the outer boundary of 
the open volume. At low altitudes, where effects of aberration and propagation time delays 
are small, the open volume shift dominates and may result in the center of the PA curve 
preceding the center of the profile (negative A@). A majority of pulsars exhibits positive 
A@. The misalignment formula is consistent with this observation if the radio emission 
altitudes at the outer edge of their pulse profiles exceed - (cf. Fig. 4) which is not 
an especially stringent constraint. 

The radii derived with the misalignment formula exceed those derived with the original 
delay-radius relation by a factor which increases quickly with decreasing altitude (and 4Q). 
This explains the trend of the delay-radius relation to predict emission radii smaller than the 



geometrical radii. The underestimate may also be produced/enhanced by the low-altitude 
emission within the central parts of the pulse profile. When both these effects work together, 
the standard delay-radius relation may underestimate r by an order of magnitude even for 
the relatively large phase shifts (A@ N 0.3'). 

The influence of the open volume shift on the method based on the core-cone shift 
(eq. 3) is difficult to assess, because the locations of the conal maxima do not need to  follow 
the outer boundary of the open volume. If they did, eq. (3) would have to be replaced with 
A$,,, M 2rn - FrA/2. If the cones have the shape of the open boundary, but their size is 
smaller, the backward shift is decreased and equals A& M Fin(Oin/&)r:I2, where din < Ob is 
the opening half-angle of the cones, and En = F ( 7  = qi,) with q n  = ,B,/Oin. Eq. (3) in this 
case becomes A$,,, M 2rn - &(Oin/Ob)r:'2. The influence of the open volume shift on the 
geometrical method is small because the rotation increases the transverse size of the open 
volume insignificantly (by a factor smaller than N 1.2, see Fig. 2 ) .  

Our misalignment formula suffers from the same internal inconsistency as the theory of 
BCW91: On one hand relativistic electrons are assumed to participate in the corotational 
motion of the magnetosphere, which therefore must be filled in with the Goldreich-Julian 
charge density. On the other hand the vucuum structure of the magnetic field is assumed 
(BCW91 used the uucuum magnetic dipole of static shape, see their eq. 9). Like the sweep- 
back effect, a current flow may affect the delay-radius relation (as well as our misalignment 
formula) in two ways: either by the local distortions of the magnetic field at the emission 
point, or by the displacement of the open volume boundary as determined by the conditions 
near the light cylinder. Locally, the currents are a higher order effect than considered in this 
paper and we neglect them (see Hibschman & Arons 2001). 
As we have seen on the example of the sweepback, this does not need to necessarily imply 
that the currents near the R1, have negligible impact on the outer boundary of the open 
volume. Since there is no well established theory of plasma loss near the light cylinder, we 
are forced to neglect its influence on the geometry of the open volume (as did BCW91). 
With two incomplete theories at hand (ie. BCW91 and our), a reader may be more inclined 
to use the delay-radius relation of BCW91, as the simpler one. However, as we have shown 
in Section 2.1, the assumption of BCW91 about the symmetry of the open volume is incor- 
rect at  least in the limit of the negligible plasma density. Whereas we cannot prove that 
the plasma effects near-&, are negligible, it is unlikely that they completely cancel out the 
asymmetry generated by the rotation. 

We thank U. Dyks for the derivation of eq. (9). JD thanks B. Rudak for all the years of 
fruitful collaboration. This work was performed while JD held a National Research Council 
Research Associateship Award at NASA/GSFC. This work was also supported by the grant 
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A. Retarded vs static dipole 

In the reference frame with 2 1 1  fi the “retarded” field Zret of the vacuum magnetic point 
dipole with the magnetic moment given by eq. ( 5 )  has the following Cartesian components: 

- L 4 { 3 ~ ~ c o s ~  + s i n u (  [ ( ~ z ~ - - T ~ ) + ~ z ~ T , +  (T2--’)~:]coS(~t--n)+ Bret,z - 
T5 

[ ~ X Y  - (3x2 - r2)rn - XYT;] sin(S2t - rn) >> 
~(3y2  - r 2 )  - 3zyrn + (r2 - y 2 2  )rn3 sin(0t - r,) ) }  

[3yz - 3mrn  - yzr:l sin(at - rn> ) } 

(AI) 

- 
B r e t , y  - { 3yZCOS Q + Sin Q ( [3Xy + (3y2 - T2)Tn - XyT:] COS(Qt - T n )  4- 

T5 

(-42) 

- { (3z2 - r2)  cos cy -t sin cy ( [ ~ X Z  + 3yzr, - XZT;] cos(0t - T,) + 
T 5  

Bret ,z  - 

(-43) 

It can be derived by any of the methods described in Yadigaroglu (1997), Arendt & Eilek 
(1998), or CRZ2000. &o, it can be obtained by taking the limit of &./Rlc << 1 in the 
solution of Deutsch (1955). For any position TO, time t o  and time interval 4 t  it holds that 

B,, ( to  i- 4t,Rz(slAt)?o) = R,(QAt)&t ( t o ,  To), (A41 

where R, (w)Trepresents the rotation of the vector Fby the angle w around the 2 axis. Thus, 
the dependence on the time t only reflects the rigid rotation of the pattern of distorted 
magnetic field lines around the 2 axis with the angular velocity E. The magnetic field BSt 
of the static-shape dipole associated with the same magnetic moment ji (eq. 5 )  is given by 
the same set of equations (A1 - A3) with Tn = 0. 

Using eqs. (-41 - -43) with t = 0 i t  can be immediately shown that the difference 
AB = B r e t  - Bst is given by eqs. (6 - 8). Using (4) and (6 - 8) one can find that the angle 
IC = arccos(Bret - ZSt/(BretBst)) is given by eq. (9) with f1, f2,  and f3 given by 

- + -  + 

+ 

(A51 
2 f l = h l - g , ,  f2=h2-29192 

and 

with 

I g1 = [(5;-1)sincyts--cosa X2 
2 r2 
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-COSQ 
y2 r2 1 

1 X2 
93 = 8 c1 [ (3 - 7;) s i n a  - ~ - C O S Q  r2 

2 X Y  hz = -- clsina-- 
3 r r  

sin o 
c1 = 

1 + 3 (xr-1 sin a + zr-1 cos 
* 

The function f4 in eq. (15) is equal to 

where Elst,, is given in eq. (13). 

The Cartesian components of the retarded magnetic field given by eqs. (A1 - A3) can be 
rewritten into the following spherical components of Zre,  in the reference frame with 2 1 1  6: 

(A15) B ~ ~ ~ , ~  = 21-L {cos a cos 8 + sin a sin 8 [rn sin x + cos XI 1 
- -- sina! [(7-; - 1) sinX + r , c o s ~ ]  , 

r3 
P 
7-3 

&et,, - 

Bret,e = - P { c o s a s i n ~  + sinQcosQ [-rn sinX + (r: - 1)  cos^]} (A17) r3 
where 

X = r, + 4 - S2t. 

Again, the (spherical) components of zst are given by eqs. (A15 - A18) with r, = 0. 

Using eqs. (A15 - A17) in eq. (4) it can be easily shown that 

1 
1 

1 

2 
3 

2 
3 

P 
r3 

AB, = - sin Q sin 8 T-: cos S - - r: sin 6 + 0 (rt) 

- r icosS+O(rg)  

S - - r: sin S + 0 (rg) 
2 
3 , 

where b = 4 - Ot. 
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B. Determination of emission radius 

As can be inferred from Fig. 3; the value nf F is (nearly) !ked a d  dcse t o  0.1 s.;hene.;2r 
17-1 << 0.4, ie. whenever << 0.6rA'2. The condition is fulfilled for any T, and a when ,+8 x 0 
(a = cobs, squares in Fig. 5). The other case when the condition is fulfilled is when the 
measured shift between the position angle center and the profile center is large (2 1") and 
the impact angle 
This is why all numerical results shown in Fig. 5 approach the solid line of F = 0.1 when 
A@ increases above 1". 

is small: the radiation comes then from high-altitudes, where 6:" >> 

When F is fixed (like in the above-described cases), the equation (19) can be inverted 
to obtain analytical solutions for T n ( 4 Q ) :  

T, = 32-l FA@ + F2 + k (164@F2 + F4) 1'2] (B1) 

where the parameter k = 1 for A@ > 0 whereas k = &1 for 4@ < 0. Thus, the solution for 
T, is unique if A@ is positive, whereas for the negative 4@ two solutions are possible. One 
can attempt to reject the smaller one of these solutions by using the theoretical constraints: 

4 
and T > - P2. r >-- &IS 

" - Rlc " - 9  

The second constraint holds when the emission is limited to the open v01ume.~ In the two 
above-mentioned cases (when ,f? NN 0 or 4@ 2 lo), one can directly use eq. (Bl) with F = 0.1 
to calculate r,. 

In a general case (including the common case when ,8 # 0 and the shift is small) one can 
constrain T, to a degree which depends on the information available. Without the knowledge 
of cy and P one can obtain a rough estimate of rn based on the measured shift 4Q by assuming 
some averaged, fixed value of F in eq. 19 (eg. F = 0.2). This is equivalent to igoring the 

much as an order of magnitude due to the large horizontal spread of r, as allowed by the 
range of F (Fig. 4). 
Therefore, a better approach is to use the following two-step procedure: 1) Using eq. (Bl) 
one can calculate the range of r, allowed by 0.1 5 F 5 0.4 and by the conditions (B2). Or, 
one can draw a horizontal line in Fig. 4 to determine graphically the range of r, allowed by 
the range of F (the measurement error of A@ can easily be taken into account by drawing 

dependence of F ( ~ , T )  sh0v.m i~ pic. A 'b 3. Fer T, - < ~ f ) - ~  this m ~ j r  &TC resu:ts wioiig by % 

31n application to the retarded dipole field this condition is approximate, not exact. Therefore, the 
minimum values of logr, determined numerically for ,8 = k2" in Fig. 5 (circles and crosses) differ slightly 
&om -3.266. 
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a horizontal strip instead of the line). For -0.0358" 5 A@ < 0, two ranges of T, are 
allowed and again the constraints (B2) may be used to try to reject the lower range. For 
-0.573' 5 A@ < -0.0358", the allowed range of T n  is between rFn and rFaX where r F n  is 
given by eq. (Bl) with k = -1 and F = 0.4 and T? by eq. (Bl) with k = +l and the same 
value of F = 0.4. 
2) With the knowledge of Q and ,6' one can more tightly constrain the allowed range of T, 

by calculating 7,in = T ( T ~ )  and Tmax = T(T?'") where rFin and TF were determined in 
the previous step. Then, from Fig. 3, using the appropriate panel, one can determine the 
narrower range of (Fmin, F m m )  corresponding to the range of (Tmin, Tmax). Then, one returns 
to the step 2) in which the tightened range (Fmin, Fmax)  must be used instead of the original 
range of (0.1,0.4). 

If the sign of ,B is unknown, the step 2) may (but does not have to) give two ranges of 
T,. If the sign is positive (equatorward viewing) the range of F considered in the step 1) 
may be narrowed to  0.1 - 0.25 (Fig. 3). 

As an example we apply the method to PSR B0301+19 and B0525+21. Although the 
pulsars exhibit very simple pulse profiles and smooth PA swings, they are among the most 
problematic objects for the delay-radius relation, which places their radio emission well into 
the region of the closed magnetic field lines (see Table 3 in Dyks et al. 2004a). In the case 
of B0301+19 ( P  = 1.38 s), BCW-91 find A@ = 0.2 f 0.1" at 1.4 GHz. The range of T, 

for F between 0.1 and 0.4 is ( T F ~ ~ , T ~ )  = (1.4 with the error of A@ 
included (step 1). For px = -0.96 f 0.63" (Everett & Weisberg 2001, hereafter EW2001) 
Fig. 3 gives ( ~ ~ i , ,  -rmax) = (-0.5, -0.03) which includes also the error of Px. EW2001 derived 
Q = 162.4 & 11.8", so that 7r - Q z 17.6" and we may use the panel of Fig. 3 for a = 20" 
to constrain the range of F to (Fmin ,Fmax)  = (0.14,0.22). This new range of F translates 
to (,Fin, T?) = (2.0 - (with the errors of both A@ and ,BX included). None 
of the constraints (B2) narrows this range. This result is in agreement with the condition 
Tn 2 T g e o / R l c .  For the observed pulse width W PZ 15.9" (BCW91) and for Q and ,B cited 
above, one finds T ~ ~ ~ / R ~ ~  M 1.3 - loy3  implies that 
the emission associated with the profile edge must originate from magnetic field lines with 
magnetic colatitude 8, z (0.5 - 0.8)8Lv. The original delay-radius relation gives T, 

(3 times smaller) which results in 6,/cv > 1 (emission from the region of closed field lines). 

In the case of B0525+21 ( P  = 3.74 s), BCW91 find A@ = 0.31t0.1" at 430 MHz. At this 
value of A@ the range of F = 0.1 - 0.4 translates into ( r F n ,  r,maX) = (2. with 
the error of A@ included. For px = 1.5 z t  0.08" (EW2001) we find (Tmin, Tmax) = (0.15,0.39). 
EW2001 suggest 7r - Q = 63.2" which implies that F 21 0.1 (Fig. 3, panel for a = 60"). 
Using this value in eq. (Bl) one finds that T, = (2.6 f 0.6) which is two times larger 

1.25 

5.3 . 

Our value of Tn = (2 - 5.3) 

9 .  

1.3 - 
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than the value predicted by the original delay-radius relation (eq. 2). However, the value 
is still six times smaller than T ~ ~ ~ / R ~ ~  = 1.7 - (calculated for IV = 20.4”) and implies 
that the emission at t>he profile edge comes from m q p e t i c  field !kes z<th czl!ti.titudes em = 
(2.4 - 3.0)8&,, ie. from the closed line region. A large part of this discrepancy can be removed 
by considering different emission altitudes across the pulse profile. 

In the case of the low-altitude emission within the profile center (considered in Section 
4), the determination of the radial distance of radio emission rn is performed as above, with 
the only dierence in that eq. (Bl) should be replaced by the inverse of eq. (20), ie. Fig. 7 
should be used instead of Fig. 4. Even allowing for the low-altitude origin of the centrd 
parts of the pulse prose, for B0525+21 at 430 MHz we still have rn < rgeo/Rlc. Apparently, 
either the radio beam of this pulsar has irregular shape, or other effects are important. 
These may include the overestimate of dipole inclination and/or /PI ,  the broadening of the 
observed pulse width due to the low energy of radio emitting electrons (all of which lead to 
the overestimate of rgeo) or refraction, eg. Lyubarski & Petrova (1998); Fussell tk Luo (2004). 
However, our radial distance r, zli 7 - underestimates rgeo/Rlc by a factor of 2.5 whereas 
the original delay-radius formula underestimates it by a much larger factor of 13. 
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Fig. 1.- The influence of rotatinn on the ! ~ a !  directictr? sf the magl;etiz Geld. The vectors 
of &t and are shown for two points in the equatorial plane of the orthogonal rotator 
(a = 90'). The points are located symmetrically with respect to the (6, ,2) plane (the plane 
is orthogonal to the page and contains it). The rotation is to  the right and i t  is assumed 
that x >> y (region near the dipole axis) and x << Illc.  With accuracy of r:, the retarded 
field B,,t is symmetrical with respect to  the (si,$ plane, ie. /c1 = 4 and = $1. More 
precisely, tq = Kt + o(r:) and q& = -41 - O(T:), ie. Kt < tq and 

+ 

> $1. 
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Fig. 2.- Crossections of the open volume with the star-centered sphere of radius r << R1, 
calculated for the retarded dipole field &,, (thick solid). The circles have radius of rrA'2 and 
are centered on the magnetic moment ,Z which protrudes perpendicularly + from the page at 
the center of each panel [(xm, ym) = (0, O)]. The magnetic field Bret which permeates each of 
the panels is nearly the same as that of the static-shape dipole with the axis containing 9. 
Rotation is to the left. The backward displacement of the retarded contours with respect to 
the (0,O) points (or circles) results in the shift of the center of the pulse profile toward later 
phases. The shape of the contours does not depend on r and P as long as T << R1, ( P  = 1 
s, and r, = 0.01 was assumed in the figure). Their size scales as rr-A'2. The dotted ovals 
present the case of the static-shape dipole. 
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Fig. 3.- The parameter F of eq. 17 as a function of the parameter T = ,&/(1.5~:’~) for the 
same dipole inclinations a as in Fig. 2. Though the results were obtained for T, = 0.01, the 
curves change little with T,, as long as T, << 1. 
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Fig. 4.- The phase shift between the center of the PA curve and the profile center as a 
function of the radial distance of the radio emission. The four curves show the case with the 
rotational distortion of the open volume included (eq. 19) and correspond to different values 
of the parameter F shown in the lower right corner of the upper panel. The thick dashed 
line presents the original delay-radius relation (eq. 2) which does not include the sweepback 
effect. In the upper panel the positive shift is shown (the PA curve lags the profile). The 
lower panel is for the negative shift (the PA curve precedes the pulse profile). Note that the 
original delay-radius relation significantly underestimates r,, especially for small A@ and 
r/&. 
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Fig. 5.- Three numerical results for Q = 45" (and different viewing angles () overplotted 
on the curves from Fig. 4. The circles are for the poleward viewing geometry with C = 43" 
(the curve is broken into two parts, one with positive, and the other with negative A@), the 
crosses are for the equatorward viewing with ( = 47", and the squares are for Q! = = 45". 
For more details see text. 
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Fig. 6.- Influence of variations of emission altitudes across the pulse profile on the E nape 
of the PA curve. Thin solid line with dots (panel b) presents the position angle curve for 
emission from the fixed radial distance of T, = 0.01. Its center lags the phase zero by 
2r, rad z 1.14". The thick solid line in panel b is for the radio emission from the last open 
field lines, ie. it corresponds to different radial distances shown in panel a. Note that the PA 
curve for the case of varying T does not exhibit any noticeable lag. The spread in T visible 
in panel a) near 4 = -7" corresponds to the notch in the open volume which appears for 
moderate dipole inclinations (see Fig. 2, Q = 45"). The dotted line (nearly overlapping with 
the thick solid) is the curve of Radhakrishnan k Cooke (1969), undisturbed by the special 
relativistic effects. 
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Fig. 7.- Dependence of the shift between the center of the PA curve and the profile center 
on the radial distance of the radio emission in the case when the central parts of the pulse 
profile originate from much lower altitude than its edge (ie. for the case marked in Fig. 6 
with the thick solid line). The layout is the same as in Fig. 4. Note the increased divergence 
from the original delay-radius relation (thick dashed line). 


